100MW electrolyser plant designs to be launched at Hannover

12th December 2016
oil refinery

ITM Power (AIM: ITM), the energy storage and clean fuel company, is pleased to announce that it will be showcasing a series of large scale electrolyser configurations up to 100MW in size at HANNOVER MESSE 2017. This is in response to utility and oil and gas industry demand for larger scale industrial installations.

ITM Power has sold a number of MW scale plants over the last year and is now responding to enquires for much larger plant for bus and heavy goods vehicle refuelling stations in the 1MW to 10MW range and, increasingly, industrial applications ranging from Power-to-Gas, refineries and steel making in the 10MW to 100MW range.

The modular design of ITM Power’s electrolyser systems enables easy scale up. The use of integrated modules enables a wide customer offering based on the Company’s existing core PEM stack technology. This approach maintains standardisation for manufacture while minimising development and design time when scaling up. The advantages of compact size, fast response time, high operating efficiency and high pressure are maintained. This approach serves the requirements of the current electrolyser market, while providing a route to access growing markets in the multi MW scale.

The designs that will be showcased include the new 2.2MW unit which is at the heart of the 10, 30, 60 and 100MW designs created for this new market demand.

Refinery hydrogen
Refineries currently use hydrogen to improve the quality of fractional distillation products and most of this hydrogen is produced from steam-reforming. About 17% of the total CO2 emissions from the European refinery sector can be attributed to hydrogen production. Emissions from steam reforming natural gas are about 10 tonnes of CO2 per tonne of hydrogen produced, nearly 50% of direct refinery CO2 emissions. The EU Fuel Quality Directive states that fuels in Europe must reduce their carbon emissions by 6% by 2020. Furthermore, The EU Emissions Trading System threshold, will be reduced by 1.74% (based on the 2010 cap) annually. UKPIA has calculated that the total additional costs for UK refineries are up to £75 million/year using an allowance cost of £10.50/t CO2e. If using green hydrogen can cut 50% of direct CO2 emissions, this represents a saving of £37 million/year for UK refineries and small emitters (<25ktCO2e a year) could be allowed to opt out entirely. Refineries need a cost effective solution that reduces carbon emissions, allowing them to comply with stringent legislation and avoid fines, while maintaining output.

Chemical Industry
The chemical industry has traditionally used the reformation of natural gas as a source of hydrogen. However, reformers have start-up times in excess of three hours, leading to unwanted periods of downtime for planned and unplanned maintenance. With their rapid start up times, PEM electrolysers are able to provide an immediate backup solution to prevent production downtime and security of hydrogen supply.

Power-to-gas energy storage
The recent Winter Package of Directive proposals from the EC includes energy storage involving the conversion of electricity to another energy carrier, such as hydrogen. Ongoing work by CEN/CENELEC is investigating hydrogen/methane blends and establishing admissible concentration levels for hydrogen in natural gas grids across Europe. These developments will enable Europe-wide deployment of power-to-gas  plant for injecting hydrogen into the gas grid while offering balancing services to the electricity grid.

Steel making
Iron ore requires chemical reduction before being used to produce steel; this is currently achieved  through the use of carbon, in the form of coal or coke. When oxidised, this leads to emissions of about 2.2 tonnes of CO2 for each tonne of liquid steel produced, equivalent to 5% of the world’s anthropogenic CO2 emissions. The substitution of hydrogen for carbon has the potential to significantly reduce CO2 emissions, because hydrogen is an excellent reducing agent and produces only water as a by-product. Furthermore, electrolytic oxygen may be injected into furnaces, including electric arc furnaces, to remove impurities, reduce NOx emissions, reduce fuel consumption, and improve flame stability and
rates of heat transfer.

Future events
In addition to the HANNOVER MESSE in April, ITM Power will be participating in the following events where it will also be showcasing it larger plant designs: Energy Storage Connected Systems (London), Energy Storage (Paris), International Hydrogen and Fuel Cell Conference (Birmingham), International Renewable Energy Storage Conference (Germany), Utility Live (Birmingham), All-Energy (Glasgow), Energy Storage Canada (Toronto), HFC2017 (Vancouver), Next Generation Energy Storage (USA CA), Energy Storage Association Annual Conference (USA NC), NYBEST Capture the Energy Conference (USA NY), Bloomberg Future of Energy Summit (USA NY).

ITM Power CEO, Dr. Graham Cooley, said: “These new plant designs are being launched at the Hannover Messe 2017 in response to a dramatically increased number of enquiries at large scale. These products will make ITM Power uniquely placed to provide solutions to the requirements of these new industrial applications.”



Rebecca Markillie
Marketing & Communications
E: rlm@itm-power.com
Recent stories
  • Trading and Operations Update

    30th November 2017
    ITM Power announce an update on trading and operations for the period since the announcement of its successful placing and open offer on 29 September 2017. The Company maintains its focus on increasing commercial sales and currently has £20.2m of projects under contract and a further £22.4m of contracts in the final stages of negotiation. The total of £42.6m is an increase of £5.9m in the two months since the placing and open offer announcement.
  • Large Scale Power-to-Gas Energy Storage Deployment Study with Northern Gas Networks

    9th November 2017
    ITM Power announce that it has secured funding from the Department for Business, Energy and Industrial Strategy (BEIS) as part of the Energy Storage Feasibility Study Competition launched in January 2017 to collaborate with Northern Gas Networks (NGN) to undertake a study examining the potential deployment of large-scale Power-to-Gas energy storage. The Company’s order pipeline stands at £19.9m of projects under contract and £20.4m of contracts in the final stages of negotiation, totalling £40.3m (subject to exchange rate variation).
All news stories